

D6.2 Tool support for the Programming model

(executive summary)

Frank Piessens, Bart Jacobs, Jan Smans, Pieter Philippaerts
(K.U.Leuven) Fabio Massacci, Michela Angeli (UNITN)

Document information

Document Number D6.2

Document Title Tool support for the programming model

Version 2.1

Status Final

Work Package WP 6

Deliverable Type Prototype

Contractual Date of Delivery 31 January 2011

Actual Date of Delivery 31 January 2011

Responsible Unit KUL

Contributors

Keyword List Programming models, verification

Dissemination level PU

Document change record

Version Date Status Author (Unit) Description

1.0 30 Nov
2010 Draft

Frank Piessens, Bart
Jacobs, Jan Smans,
Pieter Philippaerts
(KUL)

2.0 23 Dec
2010

Release
Candidate

Frank Piessens (KUL),
Fabio Massacci (UNITN)

Processed comments
from Fabio on first
draft

2.1 13 Jan
2011 Final Frank Piessens (KUL),

Michela Angeli (UNITN)

Quality check
completed – minor
remarks

Executive summary

This document summarizes the work performed in Task 6.2 of Work Package 6 of the
SecureChange project funded by the European Commission within the Seventh
Framework Programme.

The overall objective of Work Package 6 is the development of verification techniques
for evolving systems, with a strong focus on the development time and run time phases
of the software lifecycle. Tasks 6.1 and 6.2 focus on development time. The objective
of Task 6.1 was the development of techniques that can ensure the absence of classes
of vulnerabilities using formal verification. Deliverable 6.1, delivered after the first year,
developed the theory of how to extend a separation-logic based verifier so that it can
verify soundly absence of several classes of bugs, even in the presence of unchecked
exceptions and dynamic code loading and unloading.

The main objective of Task 6.2 is the implementation of a prototype of such a verifier,
and this deliverable D6.2 (a tool deliverable) delivers:

- A binary distribution of this prototype verifier (called VeriFast)

- A tool paper describing the tool at a high level

- Some sample code from the POPS case study that has been successfully verified

In order to support validation of the verifier on the HOMES and POPS case studies, we
have implemented both Java and C front ends for the verifier, and we provide a full
implementation of the techniques for dynamic code loading and unloading developed in
Task 6.1.

The tool is sufficiently mature that it can verify real Java Card code taken from the
POPS case study. Validation of the prototype on the POPS case study has started. For
this case study, one of the concerns is robustness (absence of denial-of-service
issues) when software updates happen on the card. The prototype tool is being used to
verify absence of runtime exceptions and infinite loops in Java Card applets that are
loaded on a multi-application smartcard. Several applets have already been verified. A
preliminary evaluation shows that verification is efficient, but that annotation overhead
is high. In the third year of the project, effort will be spent to reduce this annotation
overhead.

Validation of the tool on the HOMES case study is planned for the third year. For the
HOMES case study, the tool will verify the secure extensibility property for core security
module updates of the home gateway. The subset of C that is supported by the
prototype tool should be further extended before this validation can start. But initial
experiments with simplified models of the code to be verified are promising : they show
that the verifier can verify the safety of C code that loads and unloads modules
efficiently.

	Document information
	Document change record
	Executive summary

